当前位置:主页 > 工具 >

工具

复杂(1)

发布日期:2022-05-16 10:51   来源:未知   阅读:

  科学,特别是自然科学,最重要的目标之一,就是追寻科学本身的原动力,或曰追寻其第一推动。同时,科学的这种追求精神本身,又成为社会发展和人类进步的一种最基本的推动。

  科学总是寻求发现和了解客观世界的新现象,研究和掌握新规律,总是在不懈地追求真理。科学是认真的、严谨的、实事求是的,同时,科学又是创造的。科学的最基本态度之一就是疑问,科学的最基本精神之一就是批判。

  的确,科学活动,特别是自然科学活动,比起其他的人类活动来,其最基本特征就是不断进步。哪怕在其他方面倒退的时候,科学却总是进步着,即使是缓慢而艰难的进步。这表明,自然科学活动中包含着人类的最进步因素。

  科学教育,特别是自然科学的教育,是提高人们素质的重要因素,是现代教育的一个核心。科学教育不仅使人获得生活和工作所需的知识和技能,更重要的是使人获得科学思想、科学精神、科学态度以及科学方法的熏陶和培养,使人获得非生物本能的智慧,获得非与生俱来的灵魂。可以这样说,没有科学的“教育”,只是培养信仰,而不是教育。没有受过科学教育的人,只能称为受过训练,而非受过教育。

  近百年来,无数仁人志士意识到,强国富民再造中国离不开科学技术,他们为摆脱愚昧与无知做了艰苦卓绝的奋斗。中国的科学先贤们代代相传,不遗余力地为中国的进步献身于科学启蒙运动,以图完成国人的强国梦。然而可以说,这个目标远未达到。今日的中国需要新的科学启蒙,需要现代科学教育。只有全社会的人具备较高的科学素质,以科学的精神和思想、科学的态度和方法作为探讨和解决各类问题的共同基础和出发点,社会才能更好地向前发展和进步。因此,中国的进步离不开科学,是毋庸置疑的。

  然而,这并不意味着,科学的精神也同样地被公认和接受。虽然,科学已渗透到社会的各个领域和层面,科学的价值和地位也更高了,但是,毋庸讳言,在一定的范围内或某些特定时候,人们只是承认“科学是有用的”,只停留在对科学所带来的结果的接受和承认,而不是对科学的原动力——科学的精神的接受和承认。此种现象的存在也是不能忽视的。

  科学的精神之一,是它自身就是自身的“第一推动”。也就是说,科学活动在原则上不隶属于服务于神学,不隶属于服务于儒学,科学活动在原则上也不隶属于服务于任何哲学。科学是超越宗教差别的,超越民族差别的,超越党派差别的,超越文化和地域差别的,科学是普适的、独立的,它自身就是自身的主宰。

  湖南科学技术出版社精选了一批关于科学思想和科学精神的世界名著,请有关学者译成中文出版,其目的就是为了传播科学精神和科学思想,特别是自然科学的精神和思想,从而起到倡导科学精神,推动科技发展,对全民进行新的科学启蒙和科学教育的作用,为中国的进步做一点推动。丛书定名为“第一推动”,当然并非说其中每一册都是第一推动,但是可以肯定,蕴含在每一册中的科学的内容、观点、思想和精神,都会使你或多或少地更接近第一推动,或多或少地发现自身如何成为自身的主宰。

  或许,因为全神贯注于每一本书的编辑和出版细节,反倒忽视了这套丛书的出版历程,忽视了自己头上的黑发渐染霜雪,忽视了团队编辑的老退新替,忽视好些早年的读者已经成长为多个领域的栋梁。

  对于一套丛书的出版而言,25年的确是一段不短的历程;对于科学研究的进程而言,四分之一个世纪更是一部跨越式的历史。古人“洞中方七日,世上已千秋”的时间感,用来形容人类科学探求的速律,倒也恰当和准确。回头看看我们逐年出版的这些科普著作,许多当年的假设已经被证实,也有一些结论被证伪;许多当年的理论已经被孵化,也有一些发明被淘汰……

  无论这些著作阐释的学科和学说属于以上所说的哪种状况,都本质地呈现了科学探索的旨趣与真相:科学永远是一个求真的过程,所谓的真理,都只是这一过程中的阶段性成果。论证被想象讪笑,结论被假设挑衅,人类以其最优越的物种秉赋——智慧,让锐利无比的理性之刃,和绚烂无比的想象之花相克相生,相否相成。在形形色色的生活中,似乎没有哪一个领域如同科学探索一样,既是一次次伟大的理性历险,又是一次次极致的感性审美。科学家们穷其毕生所奉献的,不仅仅是我们无法发现的科学结论,还是我们无法展开的绚丽想象。在我们难以感知的极小与极大世界中,没有他们记历这些伟大历险和极致审美的科普著作,我们不但永远无法洞悉我们赖以生存世界的各种奥秘,无法领略我们难以抵达世界的各种美丽,更无法认知人类在找到真理和遭遇美景时的心路历程。在这个意义上,科普是人类极端智慧和极致审美的结晶,是物种独有的精神文本,是人类任何其他创造——神学、哲学、文学和艺术无法替代的文明载体。

  在神学家给出“我是谁”的结论后,整个人类,不仅仅是科学家,包括庸常生活中的我们,都企图突破宗教教义的铁窗,自由探求世界的本质。于是,时间、物质和本源,成为了人类共同的终极探寻之地,成为了人类突破慵懒、挣脱琐碎、拒绝因袭的历险之旅。这一旅程中,引领着我们艰难而快乐前行的,是那一代又一代最伟大的科学家。他们是极端的智者和极致的幻想家,是真理的先知和审美的天使。

  我曾有幸采访《时间简史》的作者史蒂芬·霍金,他痛苦地斜躺在轮椅上,用特制的语音器和我交谈。聆听着由他按击出的极其单调的金属般的音符,我确信,那个只留下萎缩的躯干和游丝一般生命气息的智者就是先知,就是上帝遣派给人类的孤独使者。倘若不是亲眼所见,你根本无法相信,那些深奥到极致而又浅白到极致,简练到极致而又美丽到极致的天书,竟是他蜷缩在轮椅上,用唯一能够动弹的手指,一个语音一个语音按击出来的。如果不是为了引导人类,你想象不出他人生此行还能有其他的目的。

  无怪《时间简史》如此畅销!自出版始,每年都在中文图书的畅销榜上。其实何止《时间简史》,霍金的其他著作,《第一推动丛书》所遴选的其他作者著作,25年来都在热销。据此我们相信,这些著作不仅属于某一代人,甚至不仅属于20世纪。只要人类仍在为时间、物质乃至本源的命题所困扰,只要人类仍在为求真与审美的本能所驱动,丛书中的著作,便是永不过时的启蒙读本,永不熄灭的引领之光。虽然著作中的某些假说会被否定,某些理论会被超越,但科学家们探求真理的精神,思考宇宙的智慧,感悟时空的审美,必将与日月同辉,成为人类进化中永不腐朽的历史界碑。

  因而在25年这一时间节点上,我们合集再版这套丛书,便不只是为了纪念出版行为本身,更多的则是为了彰显这些著作的不朽,为了向新的时代和新的读者告白:21世纪不仅需要科学的功利,而且需要科学的审美。

  当然,我们深知,并非所有的发现都为人类带来福祉,并非所有的创造都为世界带来安宁。在科学仍在为政治集团和经济集团所利用,甚至垄断的时代,初衷与结果悖反、无辜与有罪并存的科学公案屡见不鲜。对于科学可能带来的负能量,只能由了解科技的公民用群体的意愿抑制和抵消:选择推进人类进化的科学方向,选择造福人类生存的科学发现,是每个现代公民对自己,也是对物种应当肩负的一份责任、应该表达的一种诉求!在这一理解上,我们将科普阅读不仅视为一种个人爱好,而且视为一种公共使命!

  牛顿站在苹果树下,在苹果坠落的那一刹那,他的顿悟一定不只包含了对于地心引力的推断,而且包含了对于苹果与地球、地球与行星、行星与未知宇宙奇妙关系的想象。我相信,那不仅仅是一次枯燥之极的理性推演,而且是一次瑰丽之极的感性审美……

  如果说,求真与审美,是这套丛书难以评估的价值,那么,极端的智慧与极致的想象,则是这套丛书无法穷尽的魅力!

  还原论是对这个世界最自然的理解方式。它是说“如果你理解了整体的各个部分,以及把这些部分‘整合’起来的机制,你就能够理解这个整体”。只要是精神正常的人就不会反对还原论。

  从17世纪以来,还原论就一直在科学中占据着主导地位。还原论最早的倡议者之一笛卡儿这样描述他的科学方法:“将面临的所有问题尽可能地细分,细至能用最佳的方式将其解决为止”,并且“以特定的顺序引导我的思维,从最简单和最容易理解的对象开始,一步一步逐渐上升,直至最复杂的知识”。

  从笛卡儿、牛顿等现代科学奠基者的时代,直到20世纪初,科学的主要目标都是用基础物理学来对一切现象进行还原论式的解释。19世纪末许多科学家都赞同物理学家迈克耳孙1894年说的一句名言:“大部分大的基本原理似乎已经被明确建立起来了,今后的进展主要是将这些原理严格应用到值得我们注意的一些现象中去。”

  此后的30年里,物理学又有了相对论和量子力学这样革命性的发现。但20世纪的科学也见证了还原论梦想的破灭。虽然基础物理学和还原论对于解释极大和极小的事物取得了伟大的成就,但在对于接近人类尺度的复杂现象的解释上,它们却保持惊人的沉默。

  还原论的计划在许多现象面前都止步不前:天气和气候似乎无法还原的不可预测性;生物以及威胁它们的疾病的复杂性和适应性;社会的经济、政治和文化行为;现代技术与通信网络的发展和影响;智能的本质以及用计算机实现智能的可能前景。对复杂行为如何从简单个体的大规模组合中出现进行解释时,混沌、系统生物学、进化经济学和网络理论等新学科胜过了还原论,反还原论者的口号——“整体大于部分之和”——也随之变得越来越有影响力。

  20世纪中叶,许多科学家意识到,这类现象无法被归入单个学科,而需要在新的科学基础之上从交叉学科的角度进行理解。一些人开始尝试建立新的基础,这其中包括控制论、协同学、系统科学,以及最近才出现的——复杂系统科学。

  1984年,来自不同学科的24位科学家和数学家在新墨西哥州圣塔菲的高原沙漠会聚一堂,讨论“科学中涌现的综合”。他们的目标是筹划建立一家新的研究机构,“致力于研究各种高度复杂和相互作用的系统,这些系统只有在交叉学科的背景下才能研究清楚”并“推动知识的统一和共担责任的意识,与目前盛行的知识界的各自为政作斗争”。就这样,圣塔菲研究所作为复杂系统的研究中心被建立起来了。

  1984年我还没有听说过“复杂系统”一词,虽然头脑中已经有了类似的想法。我当时是密歇根大学计算机系的一年级研究生,研究方向是人工智能,也就是让计算机像人一样思维。事实上,我的一个目标就是理解人类如何思维——万亿个微小的脑细胞以及它们的电和化学通信如何涌现出抽象思维、情感、创造性,甚至意识。我曾深深迷恋于物理学和还原论的目标,后来才领悟到,目前的物理学对于智能可以做的很少,即便是专门研究大脑细胞的神经科学,也无法理解思维如何从大脑活动中涌现出来。很显然还原论者对认知的研究是误入歧途——我们根本无法在单个神经元和突触的层面上理解认知。

  因此,虽然我以前没有听说过“复杂系统研究”,它却很快引起了我的强烈共鸣。同时我也感到,我自己的研究领域——计算机科学——在这里可以大有作为。受研究计算的先驱们影响,我觉得计算的思想要比操作系统、编程语言、数据库之类的东西深刻得多,计算的本质与生命和智能的内在本质有密切的关联。我很幸运,在密歇根大学,“自然系统中的计算”是系里的核心课程,与软件工程和编译器设计一样。

  1989年,我攻读研究生的最后一年,我的博士生导师侯世达受邀参加在新墨西哥州洛斯阿拉莫斯举行的主题为“涌现计算”的研讨会。他太忙了抽不出时间,因此就让我替他去。在这样高水平的会议上报告自己的工作让我既兴奋又害怕。就是在这次会议上,我第一次遇见了一大群和我抱有同样想法的人。我发现他们不仅为这样的想法取了一个名字——复杂系统——而且他们在圣塔菲附近的研究所正是我想去的地方。我决定在这里争取一个职位。

  不断坚持,再加上运气,我终于获得了圣塔菲研究所(Santa Fe Institute)的邀请,在那里访问一个夏天。一个夏天又延长为一年,后来又延长了一年。最终我成为研究所的常驻研究人员。来自不同国家和学科的人们聚集在这里,一起从不同的角度来探索同样的问题。我们如何超越还原论的传统范式,对似乎无法还原的复杂系统形成新的理解?

  这本书源自我为圣塔菲的乌拉姆纪念讲座(Ulam Memorial Lecture)做的演讲——这个讲座为普通听众举办,是关于复杂系统的年度系列讲座,以纪念伟大的数学家乌拉姆。我的系列演讲的题目是“复杂性科学的过去和未来”。要为非专业听众讲清楚领域广泛的复杂性研究,让他们理解研究的现状和广阔的前景,这极具挑战性。我的角色很像是在一个幅员辽阔、文化多样的异国的导游。我们只有很短的时间来了解历史背景,参观著名景点,并感受这里的风土人情,必要时还要进行翻译以便于理解。

  这本书就是由这些讲座扩充而成——就像观光指南。书中讲述的是让我也让研究复杂系统的其他人曾经或正在着迷的问题:自然界中我们认为复杂和具有适应性的系统——大脑、昆虫群落、免疫系统、细胞、全球经济、生物进化——如何通过简单规则产生出复杂和适应性的行为?相互依赖而又自私的生物是如何一起协作,以解决影响它们整体生存的问题?这些现象存在普遍规律吗?生命、智能和适应性能用机械和计算实现吗?如果能,我们又能不能建造出真正具有生命和智能的机器?如果能做到,我们又应不应该这样做呢?

  我听说随着学科间的界线变得模糊,科学术语的意义也会变得模糊。研究复杂系统的人们谈论各种模糊的概念,例如自发秩序、自组织、涌现(包括“复杂性”本身)。这本书的一个主要目的就是为这些人所谈论的提供一幅清晰的图景,并探讨这些交叉学科的概念和方法是否能产生出实用的科学和新的思想,以解决人类面临的各种难题,例如疾病的传播、世界自然和经济资源分配的不公平、武器扩散和冲突的增多,以及人类社会对环境和气候的影响。

  这本书就像一本复杂性科学的核心思想的观光指南——它们从何而来,又将到哪里去——再加上我自己的一些见解。对于正在发展中的科学领域,其核心思想、意义以及可能导致的后果,人们的认识会(略)有不同。因此我的观点与其他专家也许会不一样。本书中一个重要的部分就是阐释这些差别,另外我也将尽我所能介绍一下那些未知的或刚刚开始被理解的领域。正是这些使得科学引人入胜,值得去探索和了解。我希望能让读者也感受到这些思想的迷人魅力和探索它们的过程中那种无可比拟的兴奋感觉。

  本书分为5部分。在第1部分我将介绍4个主题的历史和内容,这4个主题是复杂系统研究的基础:信息、计算、动力学和混沌、进化。在第2到第4部分我将阐述这4个主题如何在复杂性科学中被组织到一起。我将描述如何在计算机中模拟生命和进化,以及计算的概念反过来又如何被用来解释自然系统的行为。我还会介绍网络科学的发展,以及网络科学发现的社会群体、互联网、传染病和生物代谢等各种系统中存在的深刻共性。另外,我还会用各种例子说明如何测量自然界中的复杂性,它又如何改变我们对生命系统的认识,以及这些新的认识能不能引导智能机器的设计。我会介绍复杂系统的各种计算机模型,以及这些模型所面临的风险。最后,书的末尾还将讨论寻找复杂性科学一般性原则的问题。

  要理解书中内容无需数学或科学的背景知识,在涉及的时候我会小心地循序渐进。我希望这本书对专家和非专业读者都会有价值。虽然讨论不是技术性的,但我还是会尽力做到言而有物。注释中给出了引文的出处和讨论的附加内容,以及为想深入学习的读者准备的科学文献索引。

  受圣塔菲研究所(SFI)邀请主持复杂系统暑期学校和为乌拉姆纪念讲座演讲的经历激发了我写这本书的念头,在此向圣塔菲研究所表示感谢。同时也要感谢SFI多年来为我提供了极具启发而且富有成效的科学氛围。SFI大家庭中的众多科学家慷慨地分享了他们的思想,给了我很多灵感,这里无法将他们一一列举,在此向他们全体表示感谢。还要感谢SFI的工作人员,我在研究所工作期间,他们真诚友善地给予了我帮助。

  还要感谢牛津的编辑Kirk Jensen和Peter Prescott对我自始至终的支持和超凡的耐心,以及牛津的Keith Faivre和Tisse Takagi给予的帮助。感谢谷歌学术、谷歌图书、亚马逊网站以及经常不怎么公道但又极为有用的维基百科,它们使得学术搜索变得极为便利。

  我要将这本书献给侯世达和霍兰德,他们对我的工作和生活给予了如此多的启发和鼓励,能得到他们的教诲和友爱是我三生有幸。

  最后,感谢我的家人:我的父母Jack和Norma Mitchell、兄弟Jonathan Mitchell以及我的丈夫Kendall Springer,感谢他们给予我的爱和支持。感谢Jacob和Nicholas Springer,虽然他们的到来延误了这本书的写作,但他们也给我们的生活带来了新的欢乐和惹人喜爱的复杂性。

  科学已经探索了微观和宏观世界;我们对所处的方位已经有了很好的认识。亟待探索的前沿领域就是复杂性。

  一些思想是由简单的思想组合而成,我称此为复杂;比如美、感激、人、军队、宇宙等。

  巴西:亚马孙雨林。几十万只行军蚁(army ant)在行进。没有谁掌控这支军队,不存在指挥官。单个蚂蚁几乎没有什么视力,也没有多少智能,但是这些行进中的蚂蚁聚集在一起组成了扇形的蚁团,一路风卷残云,吃掉遇到的一切猎物。不能马上吃掉的就会被蚁群带走。在行进了一天并摧毁了足球场大小的浓密雨林中的一切食物后,蚂蚁会修筑夜间庇护所——由工蚁连在一起组成的球体,将幼蚁和蚁后围在中间保护起来。天亮后,蚁球又会散成一只只蚂蚁,各就各位进行白天的行军。

  专门研究蚂蚁习性的生物学家弗兰克斯(Nigel Franks)写道,“单只行军蚁是已知的行为最简单的生物”,“如果将100只行军蚁放在一个平面上,它们会不断往外绕圈直到体力耗尽死去”。然而,如果将上百万只放到一起,群体就会组成一个整体,形成具有所谓“集体智能(collective intelligence)”的“超生物(superorganism)”。

  这究竟是怎么回事呢?虽然科学家们已经很熟悉蚁群的习性,但集体智能的产生机制依然是个谜。就像弗兰克斯所说,“我研究了布氏游蚁(E.burchelli,一种常见的行军蚁)很多年,我发现,对它们的社会结构了解得越多,对其社会组织的疑问就会越多”。

  行军蚁是许多我们认为“复杂”的自然和社会系统的缩影。蚂蚁、白蚁以及人类这样的社会生物会聚集在一起,共同形成复杂的社会结构,从而增加种群整体的生存机会,目前还没有人确切地知道其背后的机理。类似的还有,免疫系统如何抵抗疾病,细胞如何自组织成眼睛和大脑,经济系统中自利的个体如何形成结构复杂的全球市场。最为神秘的是,所谓的“智能”和“意识”是如何从不具有智能和意识的物质中涌现出来的。

  这些正是复杂系统所关注的问题。复杂系统试图解释,在不存在中央控制的情况下,大量简单个体如何自行组织成能够产生模式、处理信息甚至能够进化和学习的整体。这是一个交叉学科研究领域。复杂一词源自拉丁词根plectere,意为编织、缠绕。在复杂系统中,大量简单成分相互缠绕纠结,而复杂性研究本身也是由许多研究领域交织而成。复杂系统专家认为,自然界中的各种复杂系统——比如昆虫群落、免疫系统、大脑和经济——之间,具有许多共性。下面我们来一一了解。

  社会性昆虫群落提供了极为丰富而神奇的复杂系统范例。例如,一个蚁群可能由数百只乃至上百万只蚂蚁组成,单只蚂蚁其实都相对简单,它们受遗传天性驱使寻找食物,对蚁群中其他蚂蚁释放的化学信号做出简单反应,抵抗入侵者,等等。然而,任何一个在野外观察过蚁群的人都会意识到,虽然单只蚂蚁的行为很简单,但整个蚁群一起构造出的结构却复杂得惊人,而且这种结构明显对群体的生存极为重要。它们使用泥土、树叶和小树枝建造出极为稳固的巢穴,巢穴中有宏大的通道网络,育婴室温暖而干爽,温度由腐烂的巢穴材料和蚂蚁自身的身体控制。一些种类的蚂蚁还会将它们的身体相互连在一起组成很长的桥,从而可以跨越很长的距离(对它们来说很长),通过树干转移到另一蚁穴(图1.1)。科学家们对蚂蚁及其社会结构进行了细致的研究,但现在仍然无法彻底弄清它们的个体和群体行为:蚂蚁的个体行为如何形成庞大而复杂的结构,蚂蚁之间如何相互通信,蚁群作为整体如何适应环境变化(比如天气变化和受到攻击)。生物进化又是如何产生出个体如此简单、整体上却如此复杂的生物?

  图1.1蚂蚁用身体建造出一座桥,让蚁群能迅速通过沟壑(图片由Carl Rettenmeyer提供)

  认知科学家侯世达在《哥德尔、艾舍尔、巴赫——集异璧之大成》一书中对蚁群和大脑进行了比较。两者都是由相对简单的个体组成,个体之间只进行有限的通信,整体上却表现出极为复杂的系统(“全局”)行为。在大脑中,简单个体是神经元。除了神经元,大脑中还有许多不同的细胞,但绝大多数脑科学家都认为是神经元的活动以及神经元群的连接模式决定了感知、思维、情感、意识等重要的宏观大脑活动。

  图1.2(上图)就是神经元的图像。神经元主要由三部分组成:细胞体,接收其他神经元信号的分支(树突),以及向其他神经元发送信号的主干(轴突)。大致上,神经元可以处于活跃状态(激发)或非活跃状态(未激发)。当神经元通过树突从其他神经元接收到足够强的信号时,它就会激发。激发时会通过轴突传出电信号,然后释放出神经递质转换成化学信号,化学信号又会作用于其他神经元的树突对其进行触发。神经元的激发频率和产生的化学输出信号会根据输入和最近的激发状况随时间变化。

  这与蚁群很类似:个体(神经元或蚂蚁)之间相互传递信号,信号的总强度达到一定程度时,会导致个体以特定的方式动作,从而再次产生信号。总体上会产生非常复杂的效果。前面说过对蚂蚁及其社会结构尚未完全了解;同样,对于单个神经元的行为和庞大的神经网络如何产生出大脑的宏观行为(图1.2,下图),科学家们也没有弄清楚。他们不知道神经元信号的意义,不知道大量神经元如何一起协作产生出整体上的认知行为,也不知道它们是怎样让大脑能够思维和学习新事物。同样,最让人迷惑的也许就是,如此精巧、整体能力如此强大的信号系统是怎样进化出来的。

  免疫系统是又一个例子。在免疫系统中,相对简单的组分一起产生出包含信号传递和控制的复杂行为,并不断进行适应。图1.3展现了免疫系统的复杂性。

  同大脑一样,不同动物的免疫系统的复杂程度也各不相同,但总体上的原则是一样的。免疫系统由许多不同的细胞组成,分布在身体各处(血液、骨髓、淋巴结等)。这些细胞在没有中央控制的情况下一起高效地工作。

  免疫系统中的主角是白细胞,也称为淋巴细胞。白细胞能通过其细胞体上的受体识别与某种可能入侵者(比如细菌)相对应的分子。大量白细胞哨兵在血液中不停巡逻,如果被激活——也就是特定受体偶然遇到了与其匹配的入侵者——就发出警报。一旦淋巴细胞被激活,就会分泌出大量能够识别类似入侵者的分子——抗体。这些抗体会到处去搜寻和摧毁入侵者。被激活的淋巴细胞的分裂速度也会加快,从而产生出更多后代淋巴细胞,帮助搜寻入侵者和释放抗体。后代淋巴细胞会不断繁衍,从而让身体能记住入侵者特征,再次遇到这种入侵者时就能具有免疫力。

  有一类细胞被称为B细胞(B是指它们产生自骨髓,Bone marrow),它具有一种奇特的性质:B细胞与某种入侵者匹配得越好,它产生的后代细胞就越多。通过随机变异,子细胞与母细胞会稍有不同,而这些子细胞产生后代的能力也与它们同入侵者相匹配的程度成正比。这样就形成了达尔文自然选择机制,B细胞变得与入侵者越来越匹配,从而产生出能极为高效地搜寻和摧毁微生物罪犯的抗体。

  还有许多种类的细胞也参与了免疫反应的大合奏。T细胞(产生自胸腺,Thymus)对于调节B细胞的反应很重要。巨噬细胞四处游荡,寻找已被抗体标记的东西,然后将其摧毁。有些细胞让免疫能长期有效。此外,系统中还有一部分是用来防止免疫系统攻击身体的正常细胞。

  同大脑和蚁群一样,免疫系统的行为是通过大量简单参与者的独自行动产生,并没有谁在进行掌控。简单参与者——B细胞、T细胞、巨噬细胞,等等——的行动可以看作某种化学信号处理网络,一旦有一个细胞识别出入侵者就会触发细胞之间产生信号雪崩,从而产生精巧而复杂的反应。不过目前这个信号处理系统的许多关键细节还没有研究清楚。比如,目前仍然没有完全弄清楚相关的信号是什么,它们具体的功能是什么,它们又是如何相互协作,从而使得系统作为一个整体能够“知道”环境中存在何种威胁,并产生出应对这种威胁的长期免疫力。我们也不清楚这种系统是如何避免攻击身体;又是什么导致系统失灵,例如如果患有自身免疫病(autoimmune diseases),系统就会对身体发起攻击;艾滋病毒(HIV)又是用怎样的策略直接攻击免疫系统本身。同样,还有一个关键问题,就是这样高效的复杂系统当初是如何进化出来的。

  经济也是复杂系统,在其中由人(或公司)组成的“简单、微观的”个体购买和出售商品,而整个市场的行为则复杂而且无法预测,比如不同地区的住宅价格或股价的波动(图1.4)。很多经济学家认为经济在微观和宏观层面上都具有适应性。在微观层面上,个人、公司和市场都试图通过研究其他人和公司的行为来增加自己的收益。以前一直认为,微观上的自利行为会使得市场在总体上——宏观层面上——趋于均衡,在均衡状态下商品价格无论怎样变化都无法让所有人受益。从收益或消费者满意度来看,如果有人受益,就肯定会有人受损。市场能达到均衡态就认为市场是有效的。18世纪经济学家亚当·斯密(Adam Smith)将市场的这种自组织行为称为“看不见的手”:它产生自无数买卖双方的微观行为。

  经济学家感兴趣的问题是,市场怎样才会变得有效,以及反过来,为何在现实世界中市场会失效。近年来,关注复杂系统研究的经济学家开始尝试用复杂系统的术语来解释市场的行为:动力学无法预测的全局行为模式,比如市场泡沫及其崩溃的模式;信号和信息的处理,比如个体买卖者的决策过程,以及市场作为整体“计算”有效价格的“信息处理”能力;还有学习和适应,比如商家调整产品以适应消费者的需求变化,以及市场作为一个整体对价格进行调整。

  万维网诞生于20世纪90年代初,此后呈爆炸性增长。与前面描述的系统类似,万维网可以视为自组织的社会系统:每个人都看不到网络的全貌,只是简单地发布网页并将其链接到其他网页。然而,复杂系统专家发现这个网络在整体上具有一些出人意料的宏观特性,包括其结构、增长方式,信息如何通过链接传播,以及搜索引擎和万维网链接结构的协同演化,这一切都可以视为系统作为一个整体的“适应”行为。万维网从简单规则中涌现出的复杂行为是目前复杂系统研究的热点。图1.5展现了一部分网页以及其链接的结构。似乎许多部分都很相似,问题是,为什么会这样?

  这些系统在细节上很不一样,但如果从抽象层面上来看,则会发现它们有很多有趣的共性。

  1.复杂的集体行为:前面讲到的所有系统都是由个体组分(蚂蚁、B细胞、神经元、股票交易者、网站设计人员)组成的大规模网络,个体一般都遵循相对简单的规则,不存在中央控制或领导者。大量个体的集体行为产生出了复杂、不断变化而且难以预测的行为模式,让我们为之着迷。

  2.信号和信息处理:所有这些系统都利用来自内部和外部环境中的信息和信号,同时也产生信息和信号。

  3.适应性:所有这些系统都通过学习和进化过程进行适应,即改变自身的行为以增加生存或成功的机会。

  现在我可以对复杂系统加以定义:复杂系统是由大量组分组成的网络,不存在中央控制,通过简单运作规则产生出复杂的集体行为和复杂的信息处理,并通过学习和进化产生适应性。[有时候会对复杂适应系统(在其中适应性扮演重要角色)和复杂非适应系统(比如飓风或湍流)加以区分。在书中讨论的大部分系统都是适应性的,我不再区分。]

  如果系统有组织的行为不存在内部和外部的控制者或领导者,则称之为自组织(self-organizing)。由于简单规则以难以预测的方式产生出复杂行为,这种系统的宏观行为有时也称为涌现(emergent)。这样就有了复杂系统的另一个定义:具有涌现和自组织行为的系统。复杂性科学的核心问题是:涌现和自组织行为是如何产生的。在书中我会尝试从各种角度来阐释这个问题。

  前面我介绍了复杂系统的一些性质。但是还有量的问题:一个特定的复杂系统到底有多复杂呢?也就是说,我们该如何度量复杂性?可以精确地说出一个系统比另一个复杂多少吗?这个问题很重要,但是还没有完全解决,至今仍是充满争议的领域。在第7章我们会看到,有许多度量复杂性的方式;不过还没有哪一种得到公认。书中许多章节描述了复杂性的各种度量方法及其用途。

  对这个问题我有两个回答。首先,虽然有很多书和文章使用这些术语,但是既不存在单独的复杂性科学,也不存在单独的复杂性理论。其次,我在书中会反复提到,一门新的科学形成的过程,就是不断尝试对其中心概念进行定义的过程。对信息、计算、序和生命等核心概念的定义就是这样的例子。书中我会对这些奋斗历程的历史和现状进行阐述,并将它们与我们对复杂性的理解结合起来。这本书讲的是科学前沿,但也讲述科技前沿背后的核心概念的历史,下面四章讲的就是贯穿全书的核心概念的历史和背景。

  对于我们来说平常大小的事物,人们为之写诗的那些——云彩、水仙花、瀑布,它们对于我们,就好像天堂对于古希腊人,充满了神奇……现在也许是最好的时代,你曾以为正确的东西几乎都是错的。

  动力系统理论(动力学,dynamics)关注的是对系统的描述和预测,其所关注的系统通过许多相互作用的组分的集体行为涌现出宏观层面的复杂变化。动力一词意味着变化。而动力系统则是以某种方式随时间变化的系统。下面是动力系统的一些例子:

  ◆大脑(神经元不断激发,神经递质在神经元之间传递,突触强度变化,整个系统不断变化);

  不仅这些,其他你想得到的系统几乎都是动力系统。甚至岩石在地理时间尺度上也是变化的。动力系统理论以最一般化的方式描述系统的变化,描述变化可能的宏观形态,以及对于其变化能够做出怎样的估计和预测。

  近年来,动力系统理论很受大众关注,这是因为它的一个分支——混沌学——发现了一些让人着迷的结果。但实际上它的历史很悠久,同许多学科一样,它可以追溯到古希腊哲学家亚里士多德。

  亚里士多德(图2.1)是目前所知的最早论述运动理论的人之一,他的理论流行了1500多年。他的理论有两个主要原理,后来发现都是错的。首先,他认为地面上的运动与天上的不同。他认为地面上的物体在受到力推动时才会沿直线运动;没有力,物体就会保持静止。而在天上,行星等天体是围绕着地球不断做圆周运动。另外,亚里士多德认为,在地面上,不同物质组成的物体运动方式也不一样。比如,他认为石头落向地面是因为石头主要是由土元素组成,而烟会上升则是因为烟是由气元素组成。在天上也是一样,越重的物体中的土元素越多,下落也越快。

  同以前许多理论家一样,亚里士多德在构造理论时没有考虑实验验证。他的方法是用逻辑和常识引导理论;用实验对理论进行验证的重要性在当时还没有被认识到;亚里士多德的思想影响很大,一直统治着西方科学,直到16世纪——伽利略(图2.2)登上历史舞台。

  伽利略、他之前的哥白尼以及与他同时代的开普勒是实验和观察科学的先驱。哥白尼提出行星不是围绕地球而是围绕太阳运行。(伽利略在宣扬这种观点时受到了天主教会的强烈阻挠,最后被迫公开宣布放弃。直到1992年教会才正式承认对伽利略的迫害是错误的。)在16世纪初,开普勒发现行星的运行轨迹不是圆而是椭圆,他还发现了关于这种椭圆运动的几条定律。

  图2.2伽利略(1564—1642)(美国物理学会西格尔图像档案,斯科特·贝尔收藏)

  哥白尼和开普勒只研究了天体的运动,而伽利略不仅研究天上的运动,也研究地面上的,他做了一些我们现在在中学物理课上会学到的实验:单摆、沿斜面滚动的小球、自由落体、镜面光线反射。不过伽利略可没有我们现在使用的那些精密实验设备,据说他通过数脉搏来计算单摆的摆动周期,还在比萨斜塔上下落物体以测量重力的效应。这些经典实验彻底改变了对运动的理解,并且直接驳斥了长期盛行的亚里士多德的观点。与直觉不同,静止并不是物体的自然状态;相反,要施加力才能让运动物体停下来。不管物体多重,在真空中下落的速度都是一样的。最具革命性的是,地面上的运动定律居然也能解释天上的运动。自从伽利略之后,有了实验观察作为基础,科学革命的发生就不可避免了。

  动力学历史上最重要的人物是牛顿(图2.3),牛顿生于伽利略死后那一年。他可以说是凭一己之力创建了动力学。为了创建动力学,他还要先发明微积分——描述运动和变化的数学。

  图2.3牛顿(1643—1727)(不知名艺术家雕刻,由美国物理学会西格尔图像档案提供)

  物理学家将对运动的总体研究称为机械力学(mechanics)。这个词源自古希腊,因为古典观点认为,所有运动都可以用杠杆、滑轮、轮轴等简单“机械”的动作组合来解释。牛顿的工作现在被称为经典力学。力学分为两部分:描述物体如何运动的运动学(kinematic),以及解释物体为何遵循运动学定律的动力学。例如开普勒定律就是运动学定律,它们描述了行星如何运动(以太阳为焦点沿椭圆运动),但没有解释行星为何这样运动。牛顿的定律则是动力学的基础,它们用力和质量作为基本概念解释了一切物体的运动,包括行星。

  1.在任何情况下,一切物体在不受外力作用时,总保持静止或匀速直线.物体的加速度与物体的质量成反比。

  3.两个物体之间的作用力和反作用力,在同一条直线上,大小相等,方向相反。

  牛顿的伟大之处在于他认识到这些定律不仅适用于地面上的物体,对天上的物体也同样适用。匀速运动定律是伽利略首先提出来的,但是他认为只适用于地面上的物体。而牛顿则认为这条定律对行星应该也适用,并且认识到需要用力(引力)来解释椭圆运动方向的不断变化。牛顿的另一重要贡献是提出了万有引力定律:两个物体之间的引力与两者质量的乘积成正比,与两者距离的平方成反比。牛顿深刻认识到这条定律适用于宇宙中一切事物,无论是行星还是苹果,这个认识是现代科学的基石。正如他说的:

  “自然简单而自足,对宏大物体的运动成立的,对微小物体也同样成立。”牛顿力学描绘了一幅

  “钟表宇宙”的图景:设定好初始状态,然后就遵循着三条定律一直运行下去。数学家拉普拉斯认识到其中蕴含了可以如钟表般精准预测的观念:他在1814年断言,根据牛顿定律,只要知道宇宙中所有粒子的当前位置和速度,原则上就有可能预测任何时刻的情况。在20世纪40年代计算机被发明出来之后,这种“原则上”的可能似乎有可能变成现实了。

  20世纪的两个重要发现表明,拉普拉斯的精确预测的梦想,即使在原则上也是不可能的。1927年,海森堡(Werner Heisenberg)提出了量子力学中的“测不准原理”,证明不可能在准确测量粒子位置的同时,又准确测量其动量(质量乘以速度)。对于其位置知道得越多,对于其动量就知道得越少,反过来也是一样。不过,海森堡原理还只是限制了对量子世界微观粒子的测量,大多数人都只是觉得它挺有趣,但是对宏观尺度上的预测——比如天气预报——应该没有多大影响。

  ——混沌系统——对于其初始位置和动量的测量如果有极其微小的不精确,也会导致对其的长期预测产生巨大的误差。也就是常说的“对初始条件的敏感依赖性”。对于一些自然系统,并没有这个问题。如果你对初始条件的测量不是十分精确,你的预测即使不全对,也会八九不离十。例如天文学家在测量行星位置时即使误差较大,也还是能准确预测日食。而对初始条件的敏感依赖性指的是,如果系统是混沌的,在测量初始位置时即使只有极其微小的误差,在预测其未来的运动时也会产生巨大的误差。对于这样的系统(飓风就是例子),一点点误差,不管多小,也会导致长期预测很不精确。

  这一点很不符合直觉,事实上,很长一段时间里,科学家们都认为这不可能。然而,混沌现象在很多系统中都被观测到了,心脏紊乱、湍流、电路、水滴,还有许多其他看似无关的现象。现在混沌系统的存在已成为科学中公认的事实。

  现在已无法说清楚是谁最先意识到可能存在这类系统。远在量子力学出现之前,就有很多人提出了对初始条件敏感依赖性的可能性。例如,物理学家麦克斯韦(

  19世纪末由法国数学家庞加莱(Henri Poincaré)(图2.4)给出。庞加莱是现代动力系统理论的奠基者,可能也是贡献最大的人,大力推动了牛顿力学的发展。庞加莱在试图解决一个比预测飓风简单得多的问题时发现了对初始条件的敏感依赖性。他试图解决的是所谓的三体问题(three-body problem):用牛顿定律预测通过引力相互作用的三个物体的长期运动。牛顿已经解决了二体问题。但没想到三体问题要复杂得多。在向瑞典国王表示敬意的一次数学竞赛中,庞加莱将其解决了。竞赛主办方提供2500瑞典克朗奖励解决“多体”问题:用牛顿定律预测任意多个相互吸引的物体的未来运动。提出这个问题是为了确定太阳系是否稳定,行星是会维持还是会偏离目前的轨道?庞加莱想先试着解决三体问题。

  ——这个问题实在太复杂了。但是他的尝试很精彩,所以最后还是赢得了奖金。牛顿发明了微积分,而庞加莱为了解决这个问题也创建了一个新的数学分支——代数拓扑(algebraic topology)。拓扑学是几何学的扩展,正是在研究三体问题的几何结果的过程中,庞加莱发现了对初始条件的敏感依赖性。下面是他对此的总结:如果我们能知道自然界的定律

  1和宇宙在初始时刻的精确位置,我们就能精确预测宇宙在此后的情况。但是即便我们弄清了自然界的定律,我们也还是只能近似地知道初始状态。如果我们能同样近似地预测以后的状态,这也够了,我们也就能说现象是可以预测的,而且受到定律的约束。但并不总是这样,初始条件的细微差别有可能会导致最终现象的极大不同。前者的微小误差会导致后者的巨大误差。预测变得不可能……

  换句话说,即便我们完全知道了运动定律,两组不同的初始条件(在这里是指物体的初始位置、质量和速度),即使差别很小,有时候也会导致系统随后的运动极为不同。庞加莱在三体问题中发现了一个这样的例子。

  直到电子计算机出现之后,科学界才开始认识这类现象的意义。庞加莱远远超越了他所处的时代,他意识到对初始条件的敏感依赖性将会阻碍对天气的长期预报。他的远见于

  1963年被证实,气象学家洛伦兹(Edward Lorenz)发现,即使是很简单的计算机气象模型,也会有对初始条件的敏感依赖性。现在虽然有了高度复杂的气象计算模型,天气预报也最多只能做到大致准确预测一个星期。目前还不清楚这个局限是否是天气的混沌本质导致的,也不知道通过收集更多数据和构造更好的模型,可以将这个局限推进多远。

  线性兔子和非线性兔子现在我们再详细了解一下对初始条件的敏感依赖性。混沌系统中初始的不确定性到底是如何被急剧放大的呢?关键因素是非线性。对于线性系统,你可以先了解其组成,然后将它们合到一起。当我的两个儿子和我一起做厨艺时,他们喜欢轮流加原料。杰克放两杯面粉,跟着尼克又加一杯糖。结果呢?三杯面粉和糖的混合物,整体等于部分之和。

  对于非线性系统,整体则不等于部分之和。杰克放了两杯苏打粉,尼克又加了一杯醋。整个事情就不可收拾了(你可以自己在家里试试)。有什么后果?你会得到大量醋、苏打粉和二氧化碳混合的泡泡。两者之间的区别在于:前面的糖和面粉不会产生反应生成新的东西,而后者的醋和苏打粉会剧烈反应,产生很多二氧化碳。

  还原论者喜欢线性,而非线性则是还原论者的梦魇。理解线性和非线性的区别很有用,值得研究一下。为了更好地理解非线性以及混沌现象,我们要研究一点点简单的数学,借用一个经典的生物群体数量动力学模型来阐释线性和非线性。设想你养了一群兔子,兔子会配对生小兔子,每对兔子父母每年会生

  很显然,如果不受限制,兔子的数量会每年翻番(这意味着兔子很快会接管这个星球,乃至太阳系和整个宇宙,不过我们暂时还不用担心)。

  两边都是每年翻番。不管是哪一年,如果你把两个岛的兔子加起来,你得到的数量还是与没分开时一样多。

  如果以当年的兔子数量为横坐标,以次年的兔子数量为纵坐标,将各年的数据标上去,你将会得到一条直线)。这就是为什么称之为线性系统。

  但是如果考虑到种群数量增长所受的限制,情况会怎样呢?这会使得增长规则变为非线性的。假定前面的规则仍然成立,每对兔子每年生4只小兔子然后死去。不过现在有些小兔子会因为太过拥挤没有繁殖就死去。研究种群数量的生物学家常用逻辑斯蒂模型(Logistic model)描述这种情形下群体数量的增长。这个模型以一种简化方式描述群体数量的增长。你设定好出生率、死亡率(由于种群数量过多导致的死亡概率)以及最大种群承载能力(栖息地所能承载的种群数量上限),然后将这一代的种群数量代入逻辑斯蒂模型,就能算出下一代的种群数量。在这里我不给出逻辑斯蒂模型的具体形式(注释中有),你可以在图2.8中看到它的变化情况。

  举个简单的例子,设出生率为2,死亡率为0.4,承载力为32,第一代有20只兔子。用逻辑斯蒂模型算出第二代为12只。将新的种群数量再代进去,又可以得出第三代仍然是12只兔子存活。此后的兔子数量将一直维持在12只。

  如果将死亡率降到0.1(其他参数不变),会有些有趣的事情发生。根据模型可以得出第二代为14.25只兔子,第三代则为15.01816只。

  等一下!怎么会有0.25只兔子,还有稀奇古怪的0.01816只?在真实世界中显然是不可能的,不过这只是模型,允许兔子数量为小数。这样在数学上简单些,而且预测的兔子数量仍然大致符合实际。所以这里我们无须为此担心。

  将算出的种群数量再代进去计算下一代的种群数量,这个不断重复的过程即所谓的

  如果将死亡率恢复成0.4,承载力翻一倍变成64,结果又会怎样呢?根据模型我们发现,从20只兔子出发,9年后种群数量会变为接近24的一个值,然后停在那里。

  你可能注意到了这些例子中的种群变化比前面单纯每年翻番的情形复杂得多。这是因为引入了种群数量过多导致的死亡,模型变成了非线性的。其图形不再是直线)。逻辑斯蒂模型中的群体数量变化不再简单等于部分之和。为了说明这一点,我们将20只兔子分为两群,每群10只,再对各群进行迭代(参数同前面一样,出生率为2,死亡率为0.4)。图2.9为迭代结果。

  第一年,前面是20只兔子只剩下12只,而分成两群后,每群有11只,总共22只。整体的变化不再等于各部分的变化之和。

  许多研究这一类事物的科学家和数学家使用逻辑斯蒂模型的一个简化形式,逻辑斯蒂映射(logistic map),它也许是动力系统理论和混沌研究中最著名的方程。逻辑斯蒂映射中出生率和死亡率的效应被合成一个数,记作R。种群规模用“承载率”替代,记为x。这个简化模型问世之后,科学界和数学界很快就将种群规模、承载力等与现实世界的联系抛到脑后,转而着迷于这个方程本身,因为它的特性太让人震惊了。现在我们也来体验一下。

  是当前值,xt+1则是下一步的值:我给出逻辑斯蒂映射的方程是为了向你展示它有多简单。事实上,它是能抓住混沌本质——对初始条件的敏感依赖性——的最简单的系统之一。1971年,数学生物学家梅(Robert May)在著名的《自然》杂志上发表了一篇文章分析逻辑斯蒂映射,引起了种群生物学家的关注。在此之前也有一些数学家对其进行了详细分析,包括乌拉姆(Stanislaw Ulam)、冯·诺依曼(John von Neumann)、梅特罗波利斯(Nicholas Metropolis)、保罗·斯坦(Paul Stein)和米隆·斯坦(Myron Stein)。但它线年代,物理学家费根鲍姆(Mitchell Feigenbaum)利用它展示了一大类混沌系统的共性。由于其显然的简单性和深厚的历史,它成了介绍动力系统理论和混沌的一些主要概念的完美载体。

  如果我们让R的值变化,逻辑斯蒂映射就变得非常有趣。我们先从R=2开始。x的初始值x

  也必须介于0和1之间,姑且设为0.5。将它们代入逻辑斯蒂映射,得出x1为0.5。同样,x2也是0.5,后面也一样。因此,如果R=2,种群初始值为最大值的一半,以后就会一直不变。现在让x

  =0.2。你可以自己用计算器算一下(我用的一个最多显示7位小数的计算器)。结果更有意思了:x0

  在前20步的值的图形。我用线将这些点连起来了,这样可以更清楚地看到,随着时间推移,x迅速收敛到0.5。

  =0.99时逻辑斯蒂映射的变化情况最终的结果还是一样的,不过过程要长一些,波动也更剧烈。

  最终都会到达0.5,并停在那里。0.5正是所谓的不动点(fixed point):到达这一点所花的时间依赖于出发点,但是一旦你到达了那里,你就会保持不动。如果你愿意,可以让R=2.5,再试一下,同样你会发现系统总是到达一个不动点,不过这次不动点是0.6。R=3. 1的情形更有趣。逻辑斯蒂映射的变化更加复杂了。图2.12是x0

  =0.2时逻辑斯蒂映射的变化情况在这个例子中,x永远也不会停在一个不动点;它最终会在两个值(0.5580141和0.7645665)之间振荡。如果将前者代入方程,就会得到后者,反过来也是一样,因此振荡会一直持续下去。不管x

  取什么值,最后都会形成这个振荡。这种最终的变化位置(无论是不动点还是振荡)被称为“吸引子”,这个说法很形象,因为任何初始位置最终都会“被吸引到其中”。往上一直到R等于大约3.4,逻辑斯蒂映射都会有类似的变化:在迭代一些步骤后,系统会在两个不同的值之间周期振荡(最终的振荡点由R决定)。因为是在两个值之间振荡,系统的周期为2。

  取何值,系统最终都会形成在四个值之间的周期振荡,而不是两个。例如,如果R=3.49,x0=0.2,最终的结果就像图2.13那样。

  =0.2时逻辑斯蒂映射的变化情况x的值很快就开始在四个不同的值之间周期振荡(如果你想知道,它们分别大约是0.872,0.389,0.829和0.494)。也就是说,在3.4和3.5之间的某个R值,最终的振荡周期突然从2增到4。

  在3.54和3.55之间的某个R值,周期再次突然倍增,一下跃升到8。在3.564和3.565之间的某个值周期跃升到16。在3.5687和3.5688之间周期又跃升到32。周期一次又一次倍增,前后R的间隔也越来越小,很快,在R大约等于3.569946时,周期已趋向于无穷。在此之前,逻辑斯蒂映射的变化大致都可以预测。如果R值给定,从任何x

  点出发的最终长期变化都能预测得到:R小于3.1时会到达不动点,R介于3.1和3.4之间时会形成双周期振荡,等等。但是当R等于大约3.569946时,x的值不再进入振荡,它们会变成混沌。下面解释一下。将x

  ,x1,x2……的值组成的序列称为x的轨道。在产生混沌的R值,让两条轨道从非常接近的x0值出发,结果不会收敛到同一个不动点或周期振荡,相反它们会逐渐发散开。在R=3.569946时,发散还很慢,但如果将R设为4.0,我们就会发现轨道极为敏感地依赖于x0。我们先将x0设为0.2,对逻辑斯蒂映射进行迭代,得到一条轨道。然后细微地变动一下x0,让x0=0.2000000001,再对逻辑斯蒂映射进行迭代,得到第二条轨道。图2.14中的实心圆圈连成的实线就是第一条轨道,空心圆圈连成的虚线则是第二条轨道。这两条轨道开始的时候很接近(非常接近,以至于实线轨道把虚线轨道都盖住了),但在大约30次迭代之后,它们明显分开了,很快就不再具有相关性。这就是“对初始条件的敏感依赖性”的由来。

  我们已经看到有三种不同的最终状态(吸引子):不动点、周期和混沌(混沌吸引子有时候也称为“奇怪吸引子”)。吸引子的类型是动力系统理论刻画系统行为的一种方式。

  我们再仔细来看看混沌行为到底有多不寻常。逻辑斯蒂映射极为简单,并且完全是确定性的:每个x

  值都有且仅有一个映射值xt+1。然而得到的混沌轨道看上去却非常随机——事实上逻辑斯蒂映射还被用来在计算机中生成伪随机数。因此,表面上的随机可以来自非常简单的确定性系统。

  有任何的不确定性,对一定时间之后的轨道就无法再预测了。R=4时我们已经看到这种状况。如果我们对x0不能精确到小数点后第10位——大多数实验观察都做不到这么精确——那么大约在t=30时,xt的值就无法预测了。对于任何能产生混沌的R值,只要x0有不确定性,不管精确到小数点后多少位,最终都会在t大于某个值时变得无法预测。数学生物学家梅对这些惊人的特性进行了总结,与庞加莱遥相呼应:

  简单的确定性方程(1)(即逻辑斯蒂映射)能产生类似于随机噪声的确定性轨道,这个事实有着让人困扰的实际含义。例如,这就意味着种群调查数据中那种明显的不稳定波动不一定表明环境的变化莫测或是采样有错误:它们有可能就是像方程(1)这样完全确定性的种群数量变化关系所导致的……另外,还可以看到,在混沌中,不管初始条件有多接近,在足够长的时间之后,它们的轨道还是会相互分开。这意味着,即使我们的模型很简单,所有的参数也都完全确定,长期预测也仍然是不可能的。

  简而言之,系统存在混沌也就意味着,拉普拉斯式的完美预测不仅在实践中无法做到,在原则上也是不可能的,因为我们永远也无法知道x

  小数点后的无穷多位数值。这是一个非常深刻的负面结论,它与量子力学一起,摧毁了19世纪以来的乐观心态——认为牛顿式宇宙就像钟表一样沿着可预测的路径运行。但是对逻辑斯蒂映射的研究是不是也会产生一些正面作用呢?对于试图发现随时间变化的系统的一般原则的动力系统理论,它能有所助益吗?事实上,对逻辑斯蒂等映射的深入研究也已经得到了同样深刻的正面结果——从中发现了混沌系统的普遍特征。

  最早用术语混沌来描述对初始条件具有敏感依赖性的动力系统的人是物理学家李天岩(T.Y.Li)和约克(James Yorke)。这个词用得恰到好处:在口语中“混沌”一词意指随机和不可预测,在逻辑斯蒂映射的混沌中就有这些性质。然而,与口语中的混沌不同,数学混沌还有本质上的秩序,即很多混沌系统所共有的普适性。

  在前面的数学探讨中,我们看到随着R从2.0增大到4.0,逻辑斯蒂迭代最初会产生不动点,然后是2周期振荡,然后是4周期,然后是8周期,一直下去,直到出现混沌。在动力系统理论中,这些突然的周期倍增被称为分叉(bifurcation)。不断分叉直至混沌的过程就是“通往混沌的倍周期之路”。

  我们经常用分叉图来表现分叉,分叉图是“控制参数”(比如R)和系统吸引子之间的函数关系。图2.15就是逻辑斯蒂映射的分叉图。横坐标为R,纵坐标是各R值对应的x的最终值(吸引子)。例如,R=2.9时,x会到达固定点吸引子x=0.655。R=3.0时,x会到达双周期吸引子。这就是图中第一个分叉点,不动点吸引子换成了双周期吸引子。在3.4和3.5之间,又分叉为4周期吸引子,后面不断周期倍增,直至R到达3.569946附近,开始出现混沌的发端(onset of chaos)。

  通往混沌的倍周期之路有着悠久的历史。早在20世纪20年代,就在数学方程中发现了倍周期分叉,20世纪50年代芬兰数学家米尔堡(P.J.Myrberg)描述了类似的连续分叉。洛斯阿拉莫斯国家实验室的梅特罗波利斯、保罗·斯坦和米隆·斯坦证明,倍周期之路并不是只有逻辑斯蒂映射才有,事实上任何抛物线形状的映射都有类似现象。这里“抛物线形状”意指映射的图形有一个隆起——用数学术语说就是“单峰(unimodal)”。

  到20世纪70年代,物理学家费根鲍姆(图2.16)的发现让倍周期之路得以在数学界闻名。费根鲍姆用一台可编程的台式计算器算出了倍周期分叉点的R值表(其中“≈”表示“约等于”):

  对应周期21(=2),R 2对应周期22(=4),Rn对应周期2n。符号∞(“无穷大”)用来标志混沌的出现——周期为无穷大的轨道。费根鲍姆注意到,随着周期增大,R值之间的距离越来越近。这意味着随着R的增大,分叉之间的间隔越来越短。在图2.15的分叉图中可以看到这一点。费根鲍姆用这些R值计算了分叉靠近的速度,也就是R值的收敛速度。他发现速度约等于常数4.6692016。这意味着随着R值增加,新的周期倍增比前面的周期倍增出现的速度快大约4.6692016倍。

  这很有趣,但还不至于让人震惊。当费根鲍姆研究了其他一些映射后——逻辑斯蒂只是研究过的映射之一——事情变得更有趣了。我在前面提到,在费根鲍姆进行这些计算之前的几年,他在洛斯阿拉莫斯的同事梅特罗波利斯、保罗·斯坦和米隆·斯坦就证明了所有单峰映射都会有类似的倍周期现象。费根鲍姆下一步做的就是计算其他单峰映射的收敛速度。他先算了正弦映射,正弦映射与逻辑斯蒂映射相似,不过用的是正弦函数。

  费根鲍姆重复了前面的步骤:计算正弦映射的倍周期分叉点的R值,然后计算这些值的收敛速度。他发现收敛速度为4.6692016。

  费根鲍姆很吃惊,速度是一样的。他又检验了其他单峰映射,结果还是一样。所有人,包括费根鲍姆自己,都根本没有想到会是这样。发现这个结果后,费根鲍姆接着又从理论上解释了为何常数4.6692016具有普适性——对所有单峰映射都成立。这个数现在被称为费根鲍姆常数。常数的理论解释使用了一种复杂的数学技巧——重正化(renormalization)。重正化最初是从量子力学中发展出来,后来又被应用到另一个物理学领域:相变和其他“临界现象”的研究。费根鲍姆将其引入了动力系统理论,并成为理解混沌的基石。

  后来发现这并不仅仅是数学现象。费根鲍姆做出这个发现之后,他的理论在多个物理动力系统的实验中得到了证实,包括流体、电路、激光和化学反应。在这些系统中都发现了倍周期分叉,也用类似的方法计算了费根鲍姆常数。在这些实验中很难准确测量分叉点的R值,但即使这样,实验得到的费根鲍姆常数也仍然在接近4.6692016的误差范围之内。这很让人印象深刻,因为费根鲍姆的理论在算出这个数时只涉及数学,没涉及物理。正如费根鲍姆的同事卡达诺夫(Leo Kadanoff)所说的,这是“一个科学家所能遇到的最好的事情,头脑中想到的东西在自然界中得到了完美的印证”。

  气象这样的大尺度的系统很难直接做实验,因此没有人在大尺度系统中直接观察到倍周期分叉或混沌。不过,一些气象计算机模型却表现出了通往混沌的倍周期之路,另外电力系统、心脏、行星等系统的计算机模型中也有类似发现。

  关于这个故事还有一件让人吃惊的事情。同许多重要的数学发现一样,几乎在费根鲍姆做出他的发现同时,另一个研究小组也独立发现了这个规律。这个小组是法国科学家科雷特(Pierre Coullet)和特雷瑟(Charles Tresser),他们也用重正化技术研究了倍周期分叉,并且发现了单峰映射的普适常数4.6692016。费根鲍姆也许的确是第一个发现者,并且向科学界广泛而清晰地传播了这个结果,所以这个成就大部分被归功于他。不过在许多科技文献中,也称这个理论为“费根鲍姆—科雷特—特雷瑟理论”,称费根鲍姆常数为“费根鲍姆—科雷特—特雷瑟常数”。在书中还有几个这样的例子,都是在思想条件成熟时同时独立做出发现。

  在这一章我们看到,混沌的发现使得科学的许多核心原则被重新加以思考。这里我总结一下这些新思想,19世纪的科学家几乎没人会相信这些。

  逻辑斯蒂映射是种群数量增长的简化模型,但是对其以及类似模型的详细研究却带来了对秩序、随机和可预测性的重新认识。这证明了理想模型(idea models)的力量——这些模型很简单,用数学或计算机就足以进行研究,但是又抓住了自然界复杂系统的本质。理想模型在这本书中,乃至整个复杂系统科学中都扮演了重要角色。

  刻画复杂系统的动力学还只是理解它的第一步。我们还要理解这些动力系统如何被用在生命系统中以处理信息和适应环境变化。后三章会针对这些主题给出一些背景知识,然后我们再来看看从动力学中得到的思想如何与信息论、计算和进化结合起来。

  我认为,熵增定律——热力学第二定律——在自然界的定律中具有至高无上的地位……如果你的理论被发现违背了热力学第二定律,你就一点希望都没有,结局必然是彻底崩塌。

  讨论复杂系统时经常会说到“自组织”:例如,行军蚁搭建的桥;萤火虫的同步闪动;经济系统中相互维系的市场;干细胞发育成特定的器官——这些都是自组织的例子。与通常情形中的有序消退、无序(熵)增长相反,这里是有序从无序中产生。

  复杂系统科学最关注的问题就是这种逆熵的自组织系统是如何可能的。不过要着手这个问题,还要先了解一下什么是“有序”和“无序”,以及人们如何看待对这种抽象性质的度量。

  许多复杂系统学家用信息的概念来刻画和度量有序和无序、复杂性和简单性。免疫学家科恩(Irun Cohen)曾说,“复杂系统比简单系统更能接收、存储和利用信息”。经济学家贝哈克(Eric Beinhocker)写道,“进化不仅只会用DNA耍把戏,对所有能处理和存储信息的系统也可以”。物理学家盖尔曼(Murray Gell-Mann)在讨论复杂系统理论时则说,“虽然它们的物理属性很不相同,但它们处理信息的方式却是类似的。这个共性也许是对它们进行研究最好的起点”。

  现在“信息”一词随处可见:信息革命、信息时代、信息技术(常常简化为IT)、信息高速公路,诸如此类。信息在口语中被用来泛指所有表示知识或事实的媒介:报纸、书籍,我母亲在电话里唠叨家里的亲人,还有现在大行其道的万维网。专业点说,信息描述了一大类现象,从在万维网上通过光纤传送的信号,到大脑中在神经元之间传递的微小分子。

  在第1章中提到的那些复杂系统的例子无一例外都涉及以各种形式交流和处理信息。进入计算机时代后,科学家们开始想到信息的传递和计算不仅仅发生在电子电路中,在生命系统中也同样存在。

  要理解这些系统中的信息和计算,首先当然要对信息和计算这两个术语的意义有精确的定义。两者都是到20世纪才在数学上被定义。让人吃惊的是,两者居然都是从19世纪末的一个物理难题发展而来,这个难题中有个非常聪明的“小妖”,它似乎不用耗费任何能量就能做很多事情。这个难题曾让物理学家们非常担心,以为他们的基本定律可能哪里错了。信息的概念是如何拯救这一切的呢?在了解这些之前,我们先要了解一点关于能量、功和熵等物理概念的背景。

  对于信息的科学研究始自热力学,热力学描述能量以及其与物质的相互作用。19世纪的物理学家认为宇宙是由物质(固体、液体、气体,等等)和能量(热能、光能、声能,等等)组成。

  能量大致上可以定义为系统“做功”的潜力,这符合我们对能量的直观感觉,特别是在这个精力十足的工作狂的时代。英语中能量(energy)一词源自古希腊语中的energia,字面意思是“工作”。不过在物理学中,对一个物体做的“工作”有特定的含义:对物体施加力的大小乘以物体沿力的方向前进的距离。

  打个比方,假设你的车在路上抛锚了,你不得不自己把车推到最近的加油站。用物理学的话讲,你做的功等于你推车的力的大小乘以到加油站的距离。在推车的过程中,你将你体内储存的能量转化成了车的动能,而转化的能量就等于所做的功加上轮子与地面摩擦消耗的热量以及你自己体温升高所耗费的热量。这个热量损失可以用熵度量。熵是对不能转化成功的能量的度量。“熵(entropy)”一词源自另一个古希腊词汇——“trope”——意思是“变成”或“转化”。

  在19世纪末,两条关于能量的基本定律——也就是热力学定律——被发现了。这些定律所针对的是“封闭系统”——它们与外界没有能量交换。

  第一定律:能量守恒。宇宙中的总能量守恒。能量可以从一种形式转化成另一种形式,比如从体内储存的能量转化成推车的动能加上消耗的热能。但是能量既不能被创生也不能被消灭。因此说是“守恒的”。

  第二定律:熵总是不断增加直至最大。系统总的熵会不断增加,直至可能的最大值;除非通过外部做功,否则它自身永远也不会减少。

  热力学第二定律被认为是定义了“时间之箭”,因为它证明了存在时间上不可逆的过程(比如,热量自发地回到你的冰箱,并转化成电能进行制冷)。“未来”可以定义为熵增的时间方向。有趣的是,热力学第二定律是唯一区分过去和未来的基本物理定律。其他物理定律在时间上都是可逆的。比如,假设可以将电子等基本粒子的相互作用拍成电影,然后给物理学家播放这段电影。如果将电影倒放,然后问物理学家哪个版本是“真实”版本。物理学家肯定猜不出来,因为不管是正放还是倒放,其中的相互作用都没有违反物理定律。这就是可逆的含义。但是如果你用红外胶片拍下冰箱释放热量的过程,然后正放和倒放,物理学家将能辨别出正放的那个是“正确的”,因为遵守了第二定律,而倒放的则没有遵守。这也就是不可逆的含义。为什么第二定律会与众不同呢?这个问题很深奥。就像物理学家罗斯曼(Tony Rothman)所指出的,“为什么第二定律能区分过去和现在,而其他自然定律却不能?这也许是物理学中最大的谜团”。

  英国物理学家麦克斯韦(James Clerk Maxwell)提出了著名的麦克斯韦方程,从而统一了电学和磁学。他是当时世界上最受尊敬的科学家,也是古往今来最伟大的科学家之一。

  )一书中提出了一个难题,题为“热力学第二定律的局限”。麦克斯韦假设有一个箱子被一块板子隔成两部分,板子上有一个活门,如图3.1所示。活门有一个“小妖”把守,小妖能测量气体分子的速度。对于右边来的分子,如果速度快,他就打开门让其通过,速度慢就关上门不让通过。对于左边来的分子,则速度慢的就让其通过,速度快的就不让通过。一段时间以后,箱子左边分子的速度就会很快,右边则会很慢,这样熵就增加了。

  根据热力学第二定律,要减少熵就得做功。小妖又做了什么功呢?当然,他开门关门无数次。但是麦克斯韦假设了小妖使用的门既无质量也无摩擦,因此开门关门要不了多少功,可以忽略不计(对这种门提出了可行的设计)。那么小妖还做了其他的功吗?

  麦克斯韦的回答是没有:“热系统(左边)变得更热,冷系统(右边)变得更冷,然而却没有做功,只有一个眼光锐利、手脚麻利的智能生物在工作。”

  为什么没做功,熵也减少了呢?这岂不是违反了热力学第二定律?麦克斯韦的小妖难住了19世纪末和20世纪初许多杰出的头脑。麦克斯韦自己的回答是第二定律(熵随时间增加)根本就不是一条定律,而是在大量分子情形下成立的统计效应,在个体分子尺度上并不必然成立。

  但是当时和后来许多物理学家都强烈反对。他们认为第二定律绝对没错,肯定是那个小妖玩了猫腻。既然熵减少了,肯定以某种难以确定的方式做了功,否则不可能。

  很多人都想解决这个悖论,但是直到60年后这个问题才被圆满解决。1929年,突破出现了:杰出的匈牙利物理学家西拉德(Leo Szilard)提出,做功的是小妖的“智能”,更精确地说,是通过测量获取信息的行为。

  西拉德(图3.2)是第一个将熵与信息联系起来的人,这个关联后来成了信息论的基础和复杂系统的关键思想。西拉德写了一篇题为“热力学系统在智能生物的干预下的熵的减少”的著名论文,文中西拉德认为测量过程(小妖要通过测量获取“比特”信息,比如趋近的分子速度是慢是快)需要能量,因此必然会产生一定的熵,数量不少于分子变得有序而减少的熵。这样由箱子、分子和小妖组成的整个系统就仍然遵守热力学第二定律。

  西拉德在此过程中也顺便定义了信息比特的概念——通过回答是/否(对小妖是“快/慢”)获得的信息。他可能是第一个这样做的人。

  现在回过头来看,获取信息需要额外做功可能是很显然的事情,起码不那么让人吃惊。但是在麦克斯韦的时代,甚至到60年后西拉德写文章的时候,人们仍然强烈倾向于将物理和精神过程视为完全独立。也许正是这种牢固的直觉使得像麦克斯韦这样睿智的人也没有看出小妖的“智能”或“观测能力”对箱子—分子—小妖系统的热力学有影响。直到20世纪发现“观察者”在量子力学中扮演了关键角色之后,信息与物理的关系才开始被理解。

  西拉德的理论后来由法国物理学家布里渊(Leon Brillouin)和伽柏(Denis Gabor)进行了扩展和一般化。此后许多科学家都认为,布里渊的理论彻底揭示了测量是如何产生熵,从而终结了小妖。

  然而,事情还没有结束。在西拉德的论文发表50年后,西拉德和布里渊的论证都被发现有一些漏洞。20世纪80年代,数学家班尼特(Charles Bennett)证明,有非常巧妙的方式可以观察和记住信息——对小妖来说,也就是弄清分子是快是慢——而不用增加熵。班尼特的证明成了可逆计算(reversible computing)的基础,他证明在理论上可以进行任何计算而不用耗费能量。班尼特的发现似乎意味着小妖又回来了,因为测量可以不用耗费能量。不过,班尼特认为,物理学家兰道(Rolf Landauer)在20世纪60年代做出的一项发现可以挽救热力学第二定律:并不是测量行为,而是擦除记忆的行为,必然会增加熵。擦除记忆是不可逆的;如果被擦除了,那么一旦信息没有了,不进行额外的测量就无法恢复。班尼特证明,小妖如果要工作,到一定的时候就必须擦除记忆,如果这样,擦除的动作就会产生热,增加的熵刚好抵消小妖对分子进行分选而减少的熵。

  兰道和班尼特弥补了西拉德论证的漏洞,但思路仍然是一致的:小妖测量和进行判断时(必然会进行擦除),不可避免地会增加熵,从而热力学第二定律仍然成立。(不过仍然有一些物理学家不认可兰道和班尼特的论证,小妖的问题依然存在争议。)

  麦克斯韦发明小妖是将其作为一个简单的思维实验,以证明热力学第二定律不是一条定律,而只是统计效应。然而,同其他许多优秀的思维实验一样,小妖的影响很深远;对小妖难题的解决成为两个新领域的基础——信息论和信息物理学。

  在前面我将“熵”定义为对无法做功而只能转换成热的能量的测量。这个熵的概念最初是由克劳休斯(Rudolph Clausius)于1865年定义的。在克劳休斯的年代,热被认为是某种可以从一个系统流向另一个系统的流质,而温度则是系统受热流影响的一种属性。

  此后数十年里,科学界开始出现一种新的关于热的观念:系统是由分子组成,而热则是分子运动——或者说动能——的产物。这种新观念主要归功于玻尔兹曼(Ludwig Boltzmann,图3.3),他创建了一门新学科,现在被称为统计力学。

  统计力学认为宏观尺度上的属性(例如热)是由微观属性产生(例如无数分子的运动)。比如,想象房间里充满了运动的空气分子。经典力学分析是确定每个分子的位置和速度,以及作用在分子上的力,并根据这些确定每个分子未来的位置和速度。当然,如果有500亿亿个分子,要解出来可得花不少时间——实际上是完全不可能的,并且根据量子力学,在原则上也不可能。而统计力学的方法则不关心各个分子具体的位置、速度以及未来的变化,而是去预测大量分子整体上的平均位置和速度。

  简而言之,经典力学试图用牛顿定律分析所有的单个微观对象(例如分子)。而热力学则只给出了宏观现象——热、能量和熵——的定律,没有说明微观分子是这些宏观现象的源头。统计力学则在两个极端之间搭建了一座桥梁,解释了宏观现象是如何从对大量微观对象的整体上的统计产生。

  统计方法有一个问题——它只给出系统的可能行为。例如,如果房间里的空气分子随机运动,那么它们将极有可能扩散到整个房间,从而保证我们所有人都可以呼吸到空气。我们预计会这样,并且生命维系于此,而且也从没有失败。然而,根据统计力学,由于分子是随机运动,这样就存在一个极小的概率在某个时间分子都飞到一个角落里。然后那个角落里的人会被高气压压死,而我们其他人则会窒息而死。不过据我所知,这样的事情还从未发生过。这并不违反牛顿定律,只是极为不可能。玻尔兹曼认为,如果有足够多的微观对象进行平均,他的统计方法就几乎一直都能给出正确答案,而事实上也确实如此。但是在玻尔兹曼的时代,大部分物理学家都只接受绝对正确的物理定律,“几乎一直”正确的物理定律是不会被接受的。此外,玻尔兹曼认为存在分子和原子这样的微观对象也让他的同行们感到不可理喻。玻尔兹曼于1906年自杀离世,有人认为这是大多数科学家对他的思想排斥所导致的。他死后不久,他的思想就被广泛认同了;现在他被认为是历史上最伟大的科学家之一。

  在充满空气的房间中,在任意时刻每个分子都有特定的位置和速度,只是无法具体测量。在统计力学的术语中,特定分子集合在某一时刻的位置和速度称为那个时刻的微观状态。对于充满了随机飞舞的分子的房间,最可能的微观状态类型就是空气分子均匀地充满整个房间。而最不可能的微观状态就是空气分子紧紧地聚到一个地方。这看上去显而易见,但是玻尔兹曼注意到这是因为分子均匀分布的微观状态比聚到一起的微观状态要多得多。

  这种情形有点类似吃角子老虎(图3.4)。假设三幅图片可能为“苹果”“橙子”“樱桃”“梨”或“柠檬”。你投个硬币进去,让转起来。图片存在不同(你输钱)的可能性比图片全部相同(你大赢一笔)的可能性要大得多。现在假设有500亿亿种图片,要让所有图片都相同就类似于让所有分子都聚到一点的情形,可能性基本为零。

  系统的宏观状态就是微观状态的类型,例如,“所有图片都相同——你赢”相对“图片不完全相同——你输”,或者“分子聚集到一起——我们窒息”相对“分子均匀分布——我们能呼吸”,一个宏观状态能对应许多不同的微观状态。玩时,有各种由不同图片组成的微观状态,这些微观状态都对应于同一个宏观状态“你输”,而只有不多的微观状态对应宏观状态“你赢”。这就是为什么赌场能挣大钱的原因。温度也是宏观状态——它与许多不同的微观状态相对应,各微观状态的分子平均速度恰好对应相同的温度。

  根据这些思想,玻尔兹曼将热力学第二定律解释为封闭系统更有可能处于可能性大的宏观状态。这听起来像是废话,不过在当时这种想法却相当离经叛道,因为涉及了概率的概念。玻尔兹曼将宏观状态的熵定义为其对应的微观状态的数量。例如,图3.4的中,图片可以是“苹果”“橙子”“樱桃”“梨”或“柠檬”,这样就总共有125种可能的组合(微观状态),其中有5种对应于“所有图片都相同——你赢”的宏观状。